Wednesday, April 15, 2009

Serialization

What is serialization?
Serialization is the process of converting an object into a stream of bytes. Deserialization is the opposite process of creating an object from a stream of bytes. Serialization / Deserialization is mostly used to transport objects (e.g. during remoting), or to persist
objects (e.g. to a file or database).

Does the .NET Framework have in-built support for serialization?
There are two separate mechanisms provided by the .NET class library - XmlSerializer and SoapFormatter/BinaryFormatter. Microsoft uses XmlSerializer for Web Services, and uses SoapFormatter/BinaryFormatter for remoting. Both are available for use in your own code.

Can I customise the serialization process?
Yes. XmlSerializer supports a range of attributes that can be used to configure serialization for a particular class. For example, a field or property can be marked with the [XmlIgnore] attribute to exclude it from serialization. Another example is the [XmlElement]
attribute, which can be used to specify the XML element name to be used for a particular property or field.
Serialization via SoapFormatter/BinaryFormatter can also be controlled to some extent by attributes. For example, the [NonSerialized] attribute is the equivalent of XmlSerializer's [XmlIgnore] attribute. Ultimate control of the serialization process can be acheived by implementing the the ISerializable interface on the class whose instances are to be serialized.

Why is XmlSerializer so slow?
There is a once-per-process-per-type overhead with XmlSerializer. So the first time you serialize or deserialize an object of a given type in an application, there is a significant delay. This normally doesn't matter, but it may mean, for example, that XmlSerializer is a poor choice for loading configuration settings during startup of a GUI application.

Why do I get errors when I try to serialize a Hashtable?
XmlSerializer will refuse to serialize instances of any class that implements IDictionary, e.g. Hashtable. SoapFormatter and BinaryFormatter do not have this restriction.

Deterministic destruction

Why doesn't the .NET runtime offer deterministic destruction?
Because of the garbage collection algorithm. The .NET garbage collector works by periodically running through a list of all the objects that are currently being referenced by an application. All the objects that it doesn't find during this search are ready to be destroyed and the memory reclaimed. The implication of this algorithm is that the runtime doesn't get notified immediately when the final reference on an object goes away - it only finds out during the next sweep of the heap.
Futhermore, this type of algorithm works best by performing the garbage collection sweep as rarely as possible. Normally heap exhaustion is the trigger for a collection sweep.

Is the lack of deterministic destruction in .NET a problem?
It's certainly an issue that affects component design. If you have objects that maintain expensive or scarce resources (e.g. database locks), you need to provide some way for the client to tell the object to release the resource when it is done. Microsoft recommend that you provide a method called Dispose() for this purpose. However, this causes problems for distributed objects - in a distributed system who calls the Dispose() method? Some form of reference-counting or ownership-management mechanism is needed to handle distributed objects - unfortunately the runtime offers no help with this.

Assembly versioning

How does assembly versioning work?

Each assembly has a version number called the compatibility version. Also each reference to an assembly (from another assembly) includes both the name and version of the referenced assembly.The version number has four numeric parts (e.g. 5.5.2.33). Assemblies with either of the first two parts different are normally viewed as incompatible. If the first two parts are the same, but the third is different, the assemblies are deemed as 'maybe compatible'. If only the fourth part is different, the assemblies are deemed compatible. However, this is just the default guideline - it is the version policy that decides to what extent these rules are enforced. The version policy can be specified via the application configuration file.

.Net Framework

What is Partial Assembly References?
Full Assembly reference: A full assembly reference includes the assembly's text name, version, culture, and public key token (if the assembly has a strong name). A full assembly reference is required if you reference any assembly that is part of the common
language runtime or any assembly located in the global assembly cache.

Partial Assembly reference: We can dynamically reference an assembly by providing only partial information, such as specifying only the assembly name. When you specify a partial assembly reference, the runtime looks for the assembly only in the application
directory.

We can make partial references to an assembly in your code one of the following ways:

-> Use a method such as System.Reflection.Assembly.Load and specify only a partial reference. The runtime checks for the assembly in the application directory.

-> Use the System.Reflection.Assembly.LoadWithPartialName method and specify only a partial reference. The runtime checks for the assembly in the application directory and in the global assembly cache

Changes to which portion of version number indicates an incompatible change?
Major or minor. Changes to the major or minor portion of the version number indicate an incompatible change. Under this convention then, version 2.0.0.0 would be considered incompatible with version 1.0.0.0. Examples of an incompatible change would be a change to the types of some method parameters or the removal of a type or method altogether. Build. The Build number is typically used to distinguish between daily builds or smaller compatible releases. Revision. Changes to the revision number are typically reserved for an incremental build needed to fix a particular bug. You'll sometimes hear this referred to as the "emergency bug fix" number in that the revision is what is often changed when a fix to a specific bug is shipped to a customer.

What is side-by-side execution? Can two application one using private assembly and other using Shared assembly be stated as a side-by-side executables?
Side-by-side execution is the ability to run multiple versions of an application or
component on the same computer. You can have multiple versions of the common language runtime, and multiple versions of applications and components that use a version of the runtime, on the same computer at the same time. Since versioning is only applied to shared assemblies, and not to private assemblies, two application one using private assembly and one using shared assembly cannot be stated as side-by-side executables.

Why string are called Immutable data Type ?
The memory representation of string is an Array of Characters, So on re-assigning the new array of Char is formed & the start address is changed . Thus keeping the Old string in Memory for Garbage Collector to be disposed.

What does assert() method do?
In debug compilation, assert takes in a Boolean condition as a parameter, and shows the error dialog if the condition is false. The program proceeds without any interruption if the condition is true.

What's the difference between the Debug class and Trace class?
Documentation looks the same. Use Debug class for debug builds, use Trace class for both debug and release builds.

Why are there five tracing levels in System.Diagnostics.TraceSwitcher?
The tracing dumps can be quite verbose. For applications that are constantly running you run the risk of overloading the machine and the hard drive. Five levels range from None to Verbose, allowing you to fine-tune the tracing activities.

Where is the output of TextWriterTraceListener redirected?
To the Console or a text file depending on the parameter passed to the constructor.

How do assemblies find each other?
By searching directory paths. There are several factors which can affect the path (such as the AppDomain host, and application configuration files), but for private assemblies the search path is normally the application's directory and its sub-directories. For shared assemblies, the search path is normally same as the private assembly path plus the shared assembly cache.

Garbage collection

What is the difference between Finalize and Dispose (Garbage collection) ?
Class instances often encapsulate control over resources that are not managed by the runtime, such as window handles (HWND), database connections, and so on. Therefore, you should provide both an explicit and an implicit way to free those resources. Provide implicit control by implementing the protected Finalize Method on an object (destructor syntax in C# and the Managed Extensions for C++). The garbage collector calls this method at some point after there are no longer any valid references to the object. In some cases, you might want to provide programmers using an object with the ability to explicitly release these external resources before the garbage collector frees the object. If an external resource is scarce or expensive, better performance can be achieved if the programmer explicitly releases resources when they are no longer being used. To provide explicit control, implement the Dispose method provided by the IDisposable Interface. The consumer of the object should call this method when it is done using the object.
Dispose can be called even if other references to the object are alive. Note that even when you provide explicit control by way of Dispose, you should provide implicit cleanup using the Finalize method. Finalize provides a backup to prevent resources from permanently leaking if the programmer fails to call Dispose.

What is garbage collection?
Garbage collection is a system whereby a run-time component takes responsibility for managing the lifetime of objects and the heap memory that they occupy. This concept is not new to .NET - Java and many other languages/runtimes have used garbage collection for some time.

Reflection

What is reflection?
All .NET compilers produce metadata about the types defined in the modules they produce. This metadata is packaged along with the module (modules in turn are packaged together in assemblies), and can be accessed by a mechanism called reflection. The System.Reflection namespace contains classes that can be used to interrogate the types for a module/assembly.

Using reflection to access .NET metadata is very similar to using ITypeLib/ITypeInfo to access type library data in COM, and it is used for similar purposes - e.g. determining data type sizes for marshaling data across context/process/machine boundaries.
Reflection can also be used to dynamically invoke methods (see System.Type.InvokeMember ) , or even create types dynamically at run-time (see System.Reflection.Emit.TypeBuilder).

.Net Framework

•When was .NET announced?
Bill Gates delivered a keynote at Forum 2000, held June 22, 2000, outlining the .NET 'vision'. The July 2000 PDC had a number of sessions on .NET technology, and delegates were given CDs containing a pre-release version of the .NET framework/SDK and Visual Studio.NET.

•When was the first version of .NET released?
The final version of the 1.0 SDK and runtime was made publicly available around 6pm PST on 15-Jan-2002. At the same time, the final version of Visual Studio.NET was made available to MSDN subscribers.

•What platforms does the .NET Framework run on?
The runtime supports Windows XP, Windows 2000, NT4 SP6a and Windows ME/98. Windows 95 is not supported. Some parts of the framework do not work on all platforms - for example, ASP.NET is only supported on Windows XP and Windows 2000. Windows 98/ME cannot be used for development.
IIS is not supported on Windows XP Home Edition, and so cannot be used to host ASP.NET. However, the ASP.NET Web Matrix web server does run on XP Home.
The Mono project is attempting to implement the .NET framework on Linux.

•What is the CLR?
CLR = Common Language Runtime. The CLR is a set of standard resources that (in theory) any .NET program can take advantage of, regardless of programming language. Robert Schmidt (Microsoft) lists the following CLR resources in his MSDN PDC# article:
Object-oriented programming model (inheritance, polymorphism, exception handling, garbage collection)
Security model
Type system
All .NET base classes
Many .NET framework classes
Development, debugging, and profiling tools
Execution and code management
IL-to-native translators and optimizers
What this means is that in the .NET world, different programming languages will be more equal in capability than they have ever been before, although clearly not all languages will support all CLR services.

•What is the CTS?
CTS = Common Type System. This is the range of types that the .NET runtime understands, and therefore that .NET applications can use. However note that not all .NET languages will support all the types in the CTS. The CTS is a superset of the CLS.

•What is the CLS?
CLS = Common Language Specification. This is a subset of the CTS which all .NET languages are expected to support. The idea is that any program, which uses CLS-compliant types, can interoperate with any .NET program written in any language.
In theory this allows very tight interop between different .NET languages - for example allowing a C# class to inherit from a VB class.

•What is IL?
IL = Intermediate Language. Also known as MSIL (Microsoft Intermediate Language) or CIL (Common Intermediate Language). All .NET source code (of any language) is compiled to IL. The IL is then converted to machine code at the point where the software is installed, or at run-time by a Just-In-Time (JIT) compiler.

•What does 'managed' mean in the .NET context?
The term 'managed' is the cause of much confusion. It is used in various places within .NET, meaning slightly different things.Managed code: The .NET framework provides several core run-time services to the programs that run within it - for example
exception handling and security. For these services to work, the code must provide a minimum level of information to the runtime.
Such code is called managed code. All C# and Visual Basic.NET code is managed by default. VS7 C++ code is not managed by default, but the compiler can produce managed code by specifying a command-line switch (/com+).

Managed data: This is data that is allocated and de-allocated by the .NET runtime's garbage collector. C# and VB.NET data is always managed. VS7 C++ data is unmanaged by default, even when using the /com+ switch, but it can be marked as managed using the __gc keyword.Managed classes: This is usually referred to in the context of Managed Extensions (ME) for C++. When using ME C++, a class can be marked with the __gc keyword. As the name suggests, this means that the memory for instances of the class is managed by the garbage collector, but it also means more than that. The class becomes a fully paid-up member of the .NET community with the benefits and restrictions that brings. An example of a benefit is proper interop with classes written in other languages - for example, a managed C++ class can inherit from a VB class. An example of a restriction is that a managed class can only inherit from one base class.

Sunday, December 28, 2008

ASP.Net

Can you create an app domain?

Yes, We can create user app domain by calling on of the following overload static methods of the System.AppDomain class

1. Public static AppDomain CreateDomain(String friendlyName)
2. Public static AppDomain CreateDomain(String friendlyName, Evidence securityInfo)
3. Public static AppDomain CreateDomain(String friendlyName, Evidence securityInfo, AppDomainSetup info)
4. Public static AppDomain CreateDomain(String friendlyName, Evidence securityInfo, String appBasePath, String appRelativeSearchPath, bool shadowCopyFiles)

What is Web Gardening? How would using it affect a design?

The Web Garden Model
The Web garden model is configurable through the section of the machine.config file. Notice that the section is the only configuration section that cannot be placed in an application-specific web.config file. This means that the Web garden mode applies to all applications running on the machine. However, by using the node in the machine.config source, you can adapt machine-wide settings on a per-application basis.
Two attributes in the section affect the Web garden model. They are webGarden and cpuMask. The webGarden attribute takes a Boolean value that indicates whether or not multiple worker processes (one per each affinitized CPU) have to be used. The attribute is set to false by default. The cpuMask attribute stores a DWORD value whose binary representation provides a bit mask for the CPUs that are eligible to run the ASP.NET worker process. The default value is -1 (0xFFFFFF), which means that all available CPUs can be used. The contents of the cpuMask attribute is ignored when the webGarden attribute is false. The cpuMask attribute also sets an upper bound to the number of copies of aspnet_wp.exe that are running.
Web gardening enables multiple worker processes to run at the same time. However, you should note that all processes will have their own copy of application state, in-process session state, ASP.NET cache, static data, and all that is needed to run applications. When the Web garden mode is enabled, the ASP.NET ISAPI launches as many worker processes as there are CPUs, each a full clone of the next (and each affinitized with the corresponding CPU). To balance the workload, incoming requests are partitioned among running processes in a round-robin manner. Worker processes get recycled as in the single processor case. Note that ASP.NET inherits any CPU usage restriction from the operating system and doesn't include any custom semantics for doing this.
All in all, the Web garden model is not necessarily a big win for all applications. The more stateful applications are, the more they risk to pay in terms of real performance. Working data is stored in blocks of shared memory so that any changes entered by a process are immediately visible to others. However, for the time it takes to service a request, working data is copied in the context of the process. Each worker process, therefore, will handle its own copy of working data, and the more stateful the application, the higher the cost in performance. In this context, careful and savvy application benchmarking is an absolute must.
Changes made to the section of the configuration file are effective only after IIS is restarted. In IIS 6, Web gardening parameters are stored in the IIS metabase; the webGarden and cpuMask attributes are ignored.

Server.Transfer and Response.Redirect

•What is the difference between Server.Transfer and Response.Redirect?
Server.Transfer() : client is shown as it is on the requesting page only, but the all the content is of the requested page. Data can be persist across the pages using Context.Item collection, which is one of the best way to transfer data from one page to another keeping the page state alive.
Response.Dedirect() :client knows the physical location (page name and query string as well). Context.Items loses the persistence when navigate to destination page. In earlier versions of IIS, if we wanted to send a user to a new Web page, the only option we had was Response.Redirect. While this method does accomplish our goal, it has several important drawbacks. The biggest problem is that this method causes each page to be treated as a separate transaction. Besides making it difficult to maintain your transactional integrity, Response.Redirect introduces some additional headaches. First, it prevents good encapsulation of code. Second, you lose access to all of the properties in the Request object. Sure, there are workarounds, but they're difficult. Finally, Response.Redirect necessitates a round trip to the client, which, on high-volume sites, causes scalability problems. As you might suspect, Server.Transfer fixes all of these problems. It does this by performing the transfer on the server without requiring a roundtrip to the client.
Response.Redirect sends a response to the client browser instructing it to request the second page. This requires a round-trip to the client, and the client initiates the Request for the second page. Server.Transfer transfers the process to the second page without making a round-trip to the client. It also transfers the HttpContext to the second page, enabling the second page access to all the values in the HttpContext of the first page.

ASP.Net

Explain < @OutputCache% > and the usage of VaryByParam, VaryByHeader.

OutputCache is used to control the caching policies of an ASP.NET page or user control. To cache a page @OutputCache directive should be defined as follows < %@ OutputCache Duration="100" VaryByParam="none" % >
VaryByParam: A semicolon-separated list of strings used to vary the output cache. By default, these strings correspond to a query string value sent with GET method attributes, or a parameter sent using the POST method. When this attribute is set to multiple parameters, the output cache contains a different version of the requested document for each specified parameter. Possible values include none, *, and any valid query string or POST parameter name.
VaryByHeader: A semicolon-separated list of HTTP headers used to vary the output cache. When this attribute is set to multiple headers, the output cache contains a different version of the requested document for each specified header.

Can we handle the error and redirect to some pages using web.config?

Yes, we can do this, but to handle errors, we must know the error codes; only then we can take the user to a proper error message page, else it may confuse the user.
CustomErrors Configuration section in web.config file:
The default configuration is:
< customErrors mode="RemoteOnly" defaultRedirect="Customerror.aspx" >
< error statusCode="404" redirect="Notfound.aspx" / >
< /customErrors >

If mode is set to Off, custom error messages will be disabled. Users will receive detailed exception error messages.
If mode is set to On, custom error messages will be enabled.
If mode is set to RemoteOnly, then users will receive custom errors, but users accessing the site locally will receive detailed error messages.
Add an < error > tag for each error you want to handle. The error tag will redirect the user to the Notfound.aspx page when the site returns the 404 (Page not found) error.

[Example]
There is a page MainForm.aspx
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here
Dim str As System.Text.StringBuilder
str.Append("hi") ' Error Line as str is not instantiated
Response.Write(str.ToString)
End Sub
[Web.Config]
< customErrors mode="On" defaultRedirect="Error.aspx"/ >
' a simple redirect will take the user to Error.aspx [user defined] error file.
< customErrors mode="RemoteOnly" defaultRedirect="Customerror.aspx" >
< error statusCode="404" redirect="Notfound.aspx" / >
< /customErrors >
'This will take the user to NotFound.aspx defined in IIS